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' SOME CONSIDERATIONS ONIAN ATRFOTL IN
AN OSCILLATING STREAM
"By J. Mayo Greenbarg ,
| SUMMARY

The velocity votential, 1ift force, moment ‘and propulsive
force on a two-dimensional airfoil in a stream of periodically
varying engle of attack have Peen Aerived on the basis of non-
stationary incompressible potentiel-flow theory which includes
the effect of the continuous sheet of vortices shed from the
trailing edge. Application of these results was made in an,
anslysis of the variation with freguency of the propulslve force
on an airfoil in an oscillabting etreem and in an anelysis of the
problem of forced vibrations of an airfoll in en oscillating
stream with consideration of the stiffness of the airfoil and
the position of its torsion axis. It was shown that when the
torsion axis of the airfoll 1s ahead of the gquarter-chord point
the amplitude of vibrations 1s generally not large, but when the
torsion axis is behind the quarter-chord polnt certain conditlons
exist under which dangsrous amplitudes of vibration may occur.
7he nonuniform response which was found for a freely hinged
airfoil restricts the use of such a device as a flow-measuring

instrument to the measurement of only very low-frequercy angular . -

. variations In an oscillating stream.

It is expected'that the results of the theoretical treatment
of the propulsive force will be useful in considerations of
counterrotating-propeller efficiencies and that the analysis of
the problem of forced vibrations will be useful in design con-
slderations of 1lifting surfaces operating in oscillating streams;
for ex&mnle, wind-tinnel fan blades behind a set of prerqtation
vanes, or tail surfaces in fluctuating wakes.

INTRODUCTION

The phenomenon of sn airfoil in an oscillatina streanm (that
is, & stream of which the angle of attack veries neriodirally) is
encountered in meny phases of aeronautica. For example, the
effect of & set of prerctation vanes upon a wind-tunnel fan blade
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18 to produce periodic dlsturbances through which the fan blades
pags. Further, a consideration of counterrotating propellers
shows that the rearward blades operating in the helical wake
produced by the forvard blades are in a stream of varying angle
of attack. As another example, the horilzontel tail of an air-
plane may be subjected to forces induced by fluctuations in the
engle of the wing wake.

The theory of nonstationary motion around airfoills with
consideration of partial motions of the fluild has been developed
by Garrick (reference 1), Kilssner (reference 2), and others. The
presgent alternative treatment lesds to a value for the lift force
on an alrfoll in an osclllating stream which is in agrsement
with that obtained in references 1 and 2. The treatment in
reference 2 leads to genersl results for the propulsive force.
The present vaper, employlng somewhat different derivations,
glves explicit results for the propulsion as well as for the
1ift on an alrfoll in an oscillating stream.

Two problems which arise Iin cases of osclllating flows
are (1) the production of vibrations and (2) the so-called .
"Katzmayr effect" (reference 3) or existence of a propulsive
force. With regard-to problem (1) the object of the present
paver is to examine theoretically the dynamics of an airfoll in
en oscillating stream and to deteimine umdser what conditions
dangerous amplitudes of vibhration may occur. A special case
for which the torsionsl stiffness is zero 1s treated with a
view to the possibility of using a small freely hinged alrfoil
as a device for measuring the angular amplitvde of .an oscillating
streem. Previous work on this problem (reference 4) has been
done for the case in which the stiffness of the airfoll was
expected to glve large vibrations. With regard to problem (2),
which is of importance in considerstions of counterrotating-
propeller efficiencies, & theoretical investigation 1s made of
the horizontal forces experienced by an airfoil in an oscillating
streanm.

The theoretical development is divided into three parts:
(l) derivation of the 1ift force end moment acting on an airfoll
in an oscillating stream, (2) derivation of the propulsive force,
and. (3) derivation and solution of the equation of motion of an
alrfoil executing toresional vibrations in en oscillating stream.
The theoretical methods used in the derivation of the 1lift forces
end momente conelst In an extension of the methods of Theodorsen - .-
(reference 5). For the derivation of the propulsive force
application is made of the method outlined by von Kermén end .
Burgers (reference 6 pp. 52 and 306). The following usual assump-
tions are made throughout: (a) incompressible potential flow, v
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(b) two-dimensional flat-plate alrfoll, (c) emall oscillations,
and (d) plans wake extending from 'bra.iling edge to infinity.

SYMBOLS

b half chord of airfoil : | )

8 x-coordinate of torsion axils 6f alrfoll T

o angle of attack of ailrfoil’ measured. clockwlse. from
horizontal -

B angle of glrstream from msan direction.measured
pogitive counterclockwise

x horizontal coo_rdinatel;dr.tond.imensional with respect to b

t time o

v L siu‘.ream velocity

v ) frequency <2 )

o . eircular freguency

k rediced frequency < >

- (k) .Theodorsen s C-function from reference 5 (F + 1G)

F,G R .T::rea}. and magimry parts of C—-function -

D o local sta.tic pressure

o} | a:Lr densi’cy : ‘

P . C perpendicular fom:e

| Ma o pi'bching momen't a‘bout .. X --- a:. measured positive
counterclockwise

I, moment of inertls sbout x = a

Rg torsional stiffness of wing

8 propulsive force
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noncirculatory veloclty potential

ciroculatory veloclity potential

strength of wake discontinuilty

phase angle

Begsel functions of the firet kind and zero and
first order -

Bessel function of.the second kind and zero and
firet order

" strength of vorticity distribution on the airfoll

mass per unit length of_wing

I
&8

radius of gyration divided by b ne
wh2
ratio of mass of cylinder of air of dlameter equal
to chord of wing to mass of wing (?Hﬂl-

constant

LIFT FORCE AND PITCHING MOMENT

In accordance with Theodorsen (reference 5) the forces due to
the noncirculatory flow and. to the effect of the wake are treated

separately.

Noncirculatory force and moment.- Consider an alrfoil of

chord 2b at zero angle of attack with respect to the averags
direction of a sinusoidal stream traveling to the right (fig. 1).
If the amplitude Bp of angle-of-attack change in the stream is
small then the horizontal and verticsal components of the velocity,
respectively, are given by .

VL =Vcos BV

vp=v 8ln B & vB



NACA TN No. 1372 5

where, wlth the amsumption of sinusoidal oscllletlons,
B = Boei(a)'b-lm)

; _
Thus, the alrfoll may be consldered as being in & uniform
horizontal stream of velocity .v plus a vertical sinusoidsal
gust of the form

e(x) = vﬂgei(mt-kx)

The veloclty potentisl o for such a normal-velocity distribubtion
is (appendix A)

k
= bVBQ |/l i((D'b 'lCXf) L/\ Qiux ro(u) du (l)
0

vhere Jo(u) i3 & Bessel function of the first kind and zero
order.

Use of the equation of motion for nonstatlonary flow gives

v fo 18\
—— <+ =
3t V(p 2" )
where
W fluild velocity

P local _éta.tic pressurs -

o air density
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and the svbhesbitubtion w=+v + %;% gives the pressure differsnce ‘Ap
at the point =x asB

;p--ep<§§+§) - (2;

Integration of this local pressure differsnce over the length of
the sirfoil gives ag the. totel force P (see appendix B, equation (BS))

P= 2nipbveﬂoJ 1 (¥) ot (3)

where Jp(k} is a Bessel function of the first kind end first
order.. -

The nonciroulatory moment about x = a (fig. 2} 1s obtained
from the integral

1 .
Ma"bef Mp(x - a) dx
-1
vhich yields (appendix B, equation (B16)) -

M, = -nébgvaﬂoei&t[QiaJl(k) + Jo(k)] | (%)

Circulatory force and moment.- The véloclty potential of an
element of vorticity -Al' at a position xp in the wake and its
mate AI' distributed over the airfoil 1s (reference 5)

= - & ’c,em":’-\/im:m~g ,XOE - 1
2n

1-'xxo

- (5)

cpxxO
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The element -Al' moves to the right relative to the airfoil with
a velocity v. Thus,

Pxxp _ vaq’xxo
ot axo
o

Substituting this expression and —-% into equation (2) and
Integrating the offect of the entire wake on the ailrfoil yields the

force
P = -pvb f l— U (6)
L FE

where U dxy 15 the element of vorticity ATD' at the point X

The Kutta condition reguires that at the trailing edge of
the plate the induced velocity equals zero; therefore, at x =1

E; Gy "'q’)]x:l =0

where

‘f’r“‘bj:“’nofho

Introducing the potential ¢ from equation (1) results in

1 @ JCO.I.l VBo 1l X k 1
o 1]/3{0-11363:0:-—&—6(‘” ) h/;’ euJo(u)d.u (7)
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Let

: .o
Q= - _‘_’%)_ ei(w't-k) | L el JO(u) du (8)

where u is an mtegré.ting vaerisble. Equation (8) becomes
(appendix C)

Q = -vBy [To) - 17(x)] ot (9)

Combining equations (6), (7), and (8) and assuming the wake to be
of the form o -

U = Tyel{wtxo)
gives for the circulatory force

' -1
fm._.__x_o,.__.e_hodxo
1 xg? -1, : (10)

/ xo+1'~ikxodxo

P = -2npvbQ

Similarly, the circﬁatow moment which 1s obtalned f_rom

1
Ma=b2f Ap{x - a) dx
-1

i I

=
d ‘/xo -1

is (reference 5)

M, = -2n‘pvb2Q %
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The integral expressi:n in equations (10) and (11) is Theodorsen's C~
function (references 5). Thus,

P = évt;labveﬁoé(k) :[Jo‘(k) - iJl(k)] o1® (12)

and

M, = Err;)vebQBO [-Jé -,I.<a1+_ ;Bc'(k)] {Ero(k) - 1Jl(k)‘lei‘“4G (13)

Adding equatiéhs (3) and (12) gives for the total force

P= en;abveﬁo t:(k) Jo(k) = iJl(k)] + 17, (k) oiwt (1k)

+

This sxpression agrees with that giveﬁ by Gerrick (reference lj and
Kussner {reference 2) in which somevwhat different msthods of
derivation are used from those used in the present paper.

Adding equations (4) and (13) gives , for the total moment
gbout x = a,

M, = -mpb%vap, 21a7; (X) + Jo(k)]eiw’G

+ en;;b?v?’fso[% - (a + le)c(kﬂ [To(k) - 17y (k) [o10® (15)

Examination of equations (14) and (15) leads to

Ma=~b<a+-9P :

This equation means that the centey of pressure is at the gquarter-
chord point of the ailrfoil.
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PROPULSIVE FORCE .

According to von Karmdn.atd Burgers (reference 6, p. 52), if
the strength of the vortiocity distribution at the leading odge of
the plate ig of ‘the form

. 16
XF "L (?h Vx + 1 ‘> . (26)

then the suction or propulsive Porce acting on the alrfoil a. has the
value

where C is & constent. The vortex strength is glven by the pum
of the tangential velocities on the two sides. 'Thus .

}_ﬁ 2 Bmp |
-2
and, thercfore, | |
VRS /ém d?f)
C =5 oo i 18
[ /o \@x ox Y (18)

. . e
‘Carrying out the indicated calculations in appendixz D leeds to .

ety - R . —

Yb - 1(J + Y1) |
T+ Yy 4 13 - 15)

C = -g VBO iﬂ)‘b (TO + iJl) (Jo g iJl>

EEEY
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vhere. J, means J, o{k) eand so forth end Yo(k) end Y,(k) are
Bessgel functions of the second kind and of the zero and first order.
The real part of this eqiation 5s : .

. 1, *
AR

C = b -v‘:Bo(V(}? + f) cos- a;t-.-'__\f(x - Y) sin a)'b)

vhere _
x (@)
(;r - 1y) (:r + Y, )2
e @ Lomn) Gy e
7k
[(Jo - ¥)% (g ¢+ Yo)]
and finally
8 = :fpbveﬁag (x + Y cos"%’c -2 s:?n 'Ba)t') (19)
where ' K
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DYNAMICS OF AN ATRFOIL IN AN OSCILLATING STREAM

The problem treated herein 1s that of an alrfoll exscuting
torsional vibrations in an osclllating stream. Because of assump-
tions (c) and (d) of the Introduction - namely, that the oscillations
are small and thet the weke is plane - the aserodynamic moments due
to partial motions of the fluid and those due $» motions of the
elrfoll can be treated independently.

The pltching moment acting on an airfoil undsrgoing angular
oscillations 1n a wiform stream is (reference 5)

e
+ 2nr;vb2@ + %—)C(k) Frcc * b(—é— - ){I (20)

Thus, the total asrodynamic moment acting on an oscillating
airfoil in an oscillating stream is the sum of equations (15)
.and (20). The equation of motion is obtained by expressing the
equilibrium of the aerodynaemic moment, the moment of inertia,

and the mechanical restoring moment. Thus, if structural damping
is neglected, the eguation of motion is

Aerodynamic mement = I & + R0 (21)
where

I moment of -inertia gbout x = a ' e _—

)
Rg - torsional stiffness

Coubining equations (J..b‘.); (20), and {21) give;
E‘a +R(§+a?]m+-—-(l )l}-e@+3,‘;)0(k)]é
¥ Eb? _ ve @ * 2)0(1‘)]

= -.2%% é + £)Bo &(Q)(Jol- 1_J‘l) + iJl]ei"“’ (22)



vhare
m masgs per unit length of wing- _
£\

r, radlus of gyration divided by b W—“—E }
b
2
K ratio of mags of cylinder of alr of dlameter equal to chord of wing to mass of wing (?%%a)

The differential eauation (22) is an equation for forced vibrations, the asolution to which is~

Pnrnd hey Toddlms :
LWL, Yy LU VULLLIM

a = agel{®t¥) o (23)
vhere . . '
ag amplitude of angular oscillations of the wing ‘ . _—_—
¥ phage’ factor '

The ratio of the emplitude of airfoll oscillations to the amplitude of stream oscillétiana
will be. celled the response of the asirfoil. I the right-hand side of equation (23) is _
substituted into equation (22), after momewhat lemgthy but straightforward calculations the

-~ e PR B B R VR - P | PR
sqauars Gf +1a e hmne Gﬂ 11, "1"'.5\)'.}.,1. 18 foumd aw he A

B
g
;
:

G%)e ] G+ %i@% +GI)R 4 3y + 03, - FJJ)E:!
_ - CY
AT AE LI CRTTE RPc= Rt SN IE ST 2

(2k)
where F(k)} + iG{k} = ¢(k}, Theodorden s G-function.

2LET "oN NI VOVN

€T
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DISCUSSION OF RESULIS

P@ggulsive-foqgg.- It has been shown (see equation (19)) that .
the propulsive force acting on a fixed airfoil at zero angle of
attack in an oscilleting stream is

‘8= ﬂprEBOE(X'+ Y cos 20t - Z oin Sot)

Since EKQDVQB is-the,étationary yalve of the 1ift on an airfoll
et angls of attack BO,' let

Ig = 2ﬂpr2

Then o

LOBO (X + Y cos 2wt -~ Z sin amﬁ) (25)

and the average velue of 8 is

LoBo !
8= —-

In figures 3 and k& curves ars presented that show the variation
with wave lengths of stream oscillations of the coefficlents i Y,
end Z apoearing in the equation for the propulsive force. For very
lew frequencles - that is, for long wave lengths of stream oscilla-
tions ~ X and Y aporoach the value 1, and % becomes zero. Thus,
as k-0, equation (25) becomes

LB
% 020 {1 + cos 2wt) (26)

This result is exactly that which 1s to be expected from quagi-
stationary considerations in which the 1ift is assumed to be
instantanecusly that valuve prescribed by the geometrical angle of
attack; that i1s, the shed vorticity produced by veriations in
angle of attack lg aspumed to appear instanteneously at a point
infinitely dletant from the airfoil. Thus (see fig. 5) the
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perpendicular Fforce 1 on an airfoil at angle of attack £ with
respect to the streeam is

L= 21rpv2'bB

and because from well~known considerations of two-dimenslonal
flows there can be no induced drag, the prooulsive force r_gtust be

8 = LB = 2npbveps

and if B = Bo cos ot,

m
1

2:rp‘bv21302cosewt

N\
LOBOGQ" + & cos %9

vhich is the samé as equation (26).

The reason for plotting the coefficients Y end Z against k

as well as against %,‘Where -2-%‘2 1ls the wave length of stream

oscillations, 1s that in the neighborhood of % = 0 the values of

Y and Z fluctuate Infinltely many times. This behavior is
brought out in figure 4 vwhere it may be seen that between .

k=1 (— ) end k =o C( ) the curves oscillate shout
zero with decreasing enplitude.

Forced vibrations.- An snalysis is made of the responese {see
equation.(24)) of an airfoil in an oscillating stream with particular
emvhasis on the parsmeters a and Ry, ‘these parameters having
qualitative as well as quantltative effects on the values of the
response. .The stiffness in torsion R, 1is related to the natural
frequency V' for zero stream velocity by the equation
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(27)

1/  Ra
5 .
QﬂyIa+npb@+&Q)

vhere Ia + npbh % + a? is the total moment of inertia of the
airfoil. From equation (27),

R
R@ = x'? [ . 4 (% + a%i]
2kmye 2 K 8 :

}
where k' = @F,
v

In figure 6 are shown response curves for an airfoil hinged at

the leading edge (a = -1.0) and having various natural frequenciles 5

of oscillation., The following vaelues of the parameters k and 1y

were chosen as beiﬁg within the practical range of application:

K = 0.0653; ra2_= § (flat-plate maas &1Btribution), The response
"t

for any natural frequency 18 never very large{st most about E— = 2.5)
. 0

and the response decreases with Increasing stiffness., The

value of the streem frequency at which meximum response cccurs is
seen to correspond more closely to V' as the natural frequency
increases. ¥ven for a freely hinged airfoil (k' = 0)- & sort of
resonence frequency exists. (See fig. 7.) Thus the use of such

& device for measuring angvler variations in an oscillating stream
vould be valid only in the range of very low reducéd frequency (long
wave lengths) in witich the response anprosches unity. .

Somevwhat different phenomena occur when the hinge point is
behind the quarter-chord point of the airfoll. In general it may
be stated that the response ie agreater. In particular g critical
stiffness exists below which the airfoil is in unetable equilibrium.
The condition for divergent motions of the airfcil is that the
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coefficient of a in souation (22) be less than or equal to Q
for k = 0. The critical stiffness, therefore, is defined by

R
8'2-=a.+
24mv

V] (oof

In figure 8 are presentsd some results for the hinge placed
near the center of the alrfoil. The values of the parametsrs =&,
Kk, and rae chosen were: a= -0.1, & = 0.0653, and ra? = 2. ’

The reduced critical frequency for this case is k' = 0.385. Tor
stiffness values somevhat higher then the critical, the response
is not wnduly large and again, as when the hinge was at the
leading edge, the maximvm response with larece valuves of the
stiffness occurs at a stream frequency close to the frequency V',

CONCLUSIONS

The veloclty potential, 1ift force, moment, and propulsive
force on a two-dimenslonal airfoil in a stream of perlodically
varying angle of attack has been derived on the basis of non-
stationary incompressible potential-flow theory which includes
the effect of the continuous sheet of vortices shed from the
trailing edge. Application of these results was made in an
analysis of the variation with frequency of the propulsive forces
on an airfoil in an oscillating stream and in an analysis of
the problem of forced vibration of an airfoil in an oscillating
stream with consideration of the stiffness of the alrfoll and
the position of its torsion axis. The following conclusions
were indicated:

1. The value of the propulsive force acting on an airfoil
in an osclllating stream is sufficiently large to be of practical
importance.

2. The amplitude of vibration of an airfoil in an oscillating
gtream is critically dependent on the stiffness of the airfoil
and the position of its torsion axis. TIn general, smplitudes of
vibration are smaller when the torsion axis is ahead of the
quarter-chord point and larger whep the torsion axis is behind
the quarter-chord point. Because of the nonuniform resovonse of
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a freely hinpmed airfoill the use of such a device for the measurement
of angular variations in an oscillating stresm would be restricted
to the range of very low frequency in which the response approaches

Langley Memorial Aercnautical Leborsatory
National Advisory Committee for Aeronautics
Lengley Field, Va., April 28, 1gh7
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APPENDIX A

NONCIRCULATORY VELOCITY POTENTIAL FOR AN
ATRFOTL IN A SINUSOIDAL GUST

The problem of finding the velocity potential for an airfoil
having a certain normal vg}oq}ty distribution is solved by the
method indicated by von Karmsn end Burgers (reference 6, p. 4b).

Represent the wing by ‘a circle (fig., 9). Place a source of
strength 2¢ at the point (31, yl) on the circle and a sink of
strength -2€¢ at (;1, -¥; )« The velocity potential of this

gource~-sink palr in the ncotation of the present paper i1s given by
(reference 5)

The transformation of the circle to its diameter is

y = y1 - ;2; x=x ¥

For the alrfoil in a sinusoidal gust

€ = vﬂoei(mt'm)

Thus

- )2 - 2
& = .;'%9 oIt 1kx) 106 (XX * (7 - 1)
| (- x)% + (v + 71)2

L}
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1
<P=bf dﬁPGJCJ_
-1

2
_ YBoP 7% fl ‘”‘3‘1 log G-x)?+ (v - 71) ix
= . 1
2n 1 (x - xl)2 + (y + ¥ )2

Integration by parts léads to

= - vBob - %2 glwt e-ikxl axy
-xe R (A1)
e 1-x° (x-x)

Lot : S . Y

1 e-ik‘xl ax, _
= f(k: X)
i IPECEEY
Then

1 R
of _ 4 [ o XL (1) - x + x) axy

ok - "
4,/—1 '.Vl - 3?12 (x - x)

-1koxy

. /‘1 o1 gz, e e dxy
- et - —
Ly Vi - x? - Vi - %2 (x - xp)
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But, from relation (4) on page 48 of reference 7,

1 eri}ﬂl dx]- .
. 1 - xle
-1

where Jo(k) is a Bessel function of the first kind and zero order.
Therefore,

\Qf-;=‘iJlk-ixi’ A2
Sk bt 0( ) (A2)

Equation (A2) is a non<hcmogonenur differential equation of the first
order. The homogeneous part

of . ;1xf
ok

has as solution
£ = co 1EE

where ¢ 1s an arbitrary constant with respect to k. The
particuler solution is obteined by the method of variation of
parameters (reference 8, p. 114), Let

£ = glk, x)e ikx ~ (43)

Then
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Combining this expression with equation (A2) gives

g§ = iﬂeikao(k)

integration of which leeds to
k i
g = izrf oy (n) du (Al)
0 .
Combining equations (A3)'and (Ak) gives
(k; x) = e~ ikx Jfk eiuxﬂo(u) dun
0]

which, when substituted into squation (Al), gives for the non-
clrculatory velocity potentlal : .

—

k
_ . DBo 7T Gilwtekx) [T e10%5 (1) dv (45)
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APPENDIX B

LIFT AND MOMENT FOR NONCIRCULATORY FLOW

Lift

The total force on the airfoll is given by

1
P:'bf Ap dx .
' -1

where, from equation (2)

/
= -0 (T O §9>
A 20 \b8x+at

But

Pred = Pye-y = O

Therefore

3

P = -2ph —-a-;@dx
-1 ot

From equation (1),

o JobvBy 5wt -ﬂcxfk 1ux
ST T% _\/l-x e A e "Jg(u) du

Thus

120b2v8 1 ' X
P= o® glwt fl \/l - x2 g7ikx d.xf eiuxJo(u) du (B2)
- 0

k

e~

(B1)



2k

Let

fl(k) = [11 /1 - x2 o 1kx 34 [ ei“xJo(u) du

Interchanging the order of integration gives

k 1
£,(x) = JC Jo(u) du U[; V- x° el (Wk)x oy

From reference T, page 48,

Substituting this expression into equation {BL) gives

. ' : aun .
fo(k) = JEF To(w) 3w - ¥} 5%

1

NACA TN No. 1372

(83}

(B4)

(85)
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Tet

u-~kX= -y
and

du = ~dw
Then |,

£ (X) «j: F1(-w) (ke - w) G

k
-xfo L3 () (ke - W) %l’.

3, (w) ‘Tplke - w) &

n
=
o(\w

But from reference 7, page 380,'for pn =0 amd v > -1

z . I .
£ Tu(1) ay(z - v) 2 i*,**;’.(.i_ (56)

Therefore

£1(k) = (k) (57)
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and equation (B2) becomes

2
P= giﬂ%‘io.f’f Iy (k) olat (B8)

Moment

The noncirculatory moment sbout the point x = a (fig. 2)
is obtained from the integrsl

o 1
My = b f Ap(x - a) dx
-1 -

which, combined with equation (2), gives

il 1 1
Mg = 2pbv ® dx + 2pb°a 0 dx - 2pb2 x 20 dx
-1 -1 ot .1 ot

By use of equations (1) and (Bi), this equation becomes

- 22 .
2pb v B A —
M o= - e O Gl0E f V1 - x2 emikx g5 fk o1% 7 (u) du
d Lk L1 0 0

3 1 .
i 2ip‘ﬁkasavsg ol fl V1 - 22 o~1kX gy f o1 go(u) du  (B9)

21p‘b3wvﬁo

. _
+ - glwt f x i1 - %2 om1kX gy fk plux Jo(u) du
-1 o]
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7
The first two integrals on the right side -of this expression ars
already known (see equations {B3) and (B7)). In order to obtain
the third integral, let
1 T F _-ikx ® o
fo(k) = f x \/1 -x"e dxf o1™X J5(u) aun (B10)
1 0
Interchange the order of integration. Then
k . 1 —reme '
f5(k) = f Jo(n) du f x ‘/l « 22 l{u-k)x 4y (B11)
Yo <41
But
YT twk)z oo L s e 2v3/2 Li(uk) ll
f x Vl - X" e Tidx = - = (1 - z2)3 e (u-k)x (B12)
1 3 | -1
i - 8. Y 243/2_1(u-k)
3 =1
o y . X
= i(u - k) (1 - x2)3/2 ei(u—k)x ax
S 3 .- %1
and, from equation (B5)
b L A e g
f (1 - x2)3/2 gi(u-k)x gy o 20210 = ®/ (B13)
-1

(v - x)2
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Combine equations (B12) and (B13) and substitute into dquation (B11).
Then ' - ' . ' : '

k
du
falk in'[ Jaln) Jo(u - k
oK) = 1 [ 3o(w) Jp(u - ¥)
Let
u-Xk=-v
and
; o
dun = ~-dw
Then

[

0 k
fo(k) = 1«& Ja(-w) Jo(k - w‘) %‘I = _-mj; Tl ~w) Tk - w) %

=.-1rr'/0k Je(y) Jq(x.— w) %—'-r

which becomes (see elquat:llon (B6))
£o(k) = - _1é1£ Jo(k) (B1k)

The equation for the moment about x = a can now be wrltten as

21ob2v28, o 2riEbOsavE
= - - 1wt
Mg, _ J1(k) e - Jl(k)e
" | (B15)
- rRpbwv :
+ = g Je(k) olwt
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The recurrence formula from reference 7, page 17,

Jn-l'(k) + Jn+1(k) = -QEI-" i.Tn(k)
gives for n=1 R

Jo(k) = ~To(k) + £ 5 (x)

Substitubing this expression into equation (Bl5) and making use of
the definition k = ‘%‘i yields '

a

29

M, = -2ripbZavip, Jp(k) o100 b2y RaTp (k) et - s (B16)
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APPENDIX C
EVALUATION.OF @ (EQUATION (8))
Equation (8) is

. o .
Q= - vBo ol(it-Xk) f olu Jo(“) an
& Jo

(c1)

' k . ] R .
= - —-VE?' eimt f ei(u k) JO(“) du
k 0

Bub

Ik 1{u-k)
Jaln) du = - k) J a
hé e o(v. u Kcos (u ) Io(u) u

+ iﬁ gin (u - k) Jo(u) du
O

From reference 7, pages 380 and 381,

Jk cos (k - u) Ju(u) du = kJy(k)
0

k
f sin (k - u) Jp{uw) aun k74 (k)
0



NACA TN No. 1372 -3

Thersefore

f ei(u'k) Jo(u) du = kTg(k) - 1kJp(k)

= x[To(x) - 13,(x)] ,

and

Q= -vBOEJ‘O(k).- 1Ji(1c)]eiwt | (c2)
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APPENDIX D
CALCULATION OF THE FROPULSIVE FORCE

From equation (1)

- - DBy i(wtk ft ;o
@3) a (;E §>Jr-l k ot or) o Jo(.u) e

) -<\/1' - ?) 1 R °m.~[-{ oM () am
1 E

- X

The integral on the right side of this equation is the complex
conjugate of that in appendix C. Thus

f o~1(u-k) Jo(u) du = k(Jq -liJl_)
= k(Jy + 17;)

where Jo means Jpn(k), and so forth. Therefore

acp
Bx X=-1 (Vl + x) _75 (o + 1) ° (o1)

Now, for the velocity due to the wake,

?ﬁ.‘) = (e L3 k. —1de0
O% /-1 <Vl_:_£2)x=-l Ty w1
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but (see eguations (7) and (8))

(3]
2
1 P[x_o -1
Py T*"deo=Q.
1 ¥l
Therefore

T2 - 1

From reference 7, page 180,

)

i
YY)

Ty(k)

end

7, (k)

% ! cos (k cosh t - —;:n n) cosh nt dt

f gin <k cosh t -~ % n ﬁ) cosh nt at
0

33

(D2)
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vhich lead to, vwhen cosh t is replaced by x,,

Jo(k) = & " ot ¥ xp g
7w |
1 onz-l
® X008 kfxo dxo
Jka-?-
L(K) ﬁf s
1 4]

Equation (D2) becomes now

ECP_I) /1 lQ(Jl‘Yo) - I + ¥y)
..ax I‘-‘-'l l/l + . X==1 V§

(31 + Yo) + 1(Jp - Y3)

and after substitution of the value of § from equation (C2)
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_;_’E)F-l .. C/ié“;)m %0 (3 - 471) | (@1 - o) - (30 + Yl)—leiwt

n TR 1(Jo - Y1)
IR D . (D3)
Combining equations (DL) ‘and (D3) with-(see squation (18))

e,

gives

6 = =2 vpele® (Jp + 101) + (g - 13y) 2 -Y0) = (% +T)
'/2"0e [0 1) + (% 1) G %) * 100 - T)

. (D)

r Ll
t

1 N

. CLR 12, v 2. 2
= J Jq J'o +Y1 Yo
-u-e-vﬂo(cosm'b-!—isinmt) Jo i1 +

{0y + Y)2 + .(Jo - 1y)°

2 2 2 2
2J1(Jodq + YooY J1° - dg= + ¥1© - ¥
- 1(Jody, oY1) #1312 1 0 1 0

(71 + %)% + (3 - 1)° (31 + Yo)® + (Jo - 13)°

_239(JT1 * Yo¥a)
(J1 + Yo)2 + (Jp - Yq)2

the real part of which is

C = ﬁvBO[V(X +Y) cos ot - \/(x - Y) sin th (D5)
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36
vhere .
. ot - 1Y)’
(Jo - )%+ (3 + )@
- (2 2 1
T (Jo - Yp)B + (310t Yo)f
and

Y= 3oy, - 11%0)2 (3 - ¥)2 - (31 + %0)?]

| [(Jo - 7)® + Iy YQ)QJ2 .

; (n'g'k)e [-QO : 11)2 - (5 +¥)°

(Jo - ¥3)% + (31 + Y6)2]2' |

and use hag been made of the formula (reference T, Do 77)

2
JOY]- - JlYO = "‘. ;‘-C-};_'

Substituting equation (D5) into (see equation (17))

8 =‘ﬂpQ2
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glves

[}
]

.n‘p’bve{:loe I?X +Y) coslwt + (X - ¥) sinzm'b,

-2 ;;/XE -«-Ya gin ot cos wt_‘

nobvEpo? (x +Y cos 2 ot - X2 - Y2 sin 2 a)t>

Letting Z =VX° - Y° . gives flhally

8 = Ttp'bvaﬁoe_' (X + Y cos 2wt - Z sin 2 wt) (D6)
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F/g;re.5 o Diagram showing hotation wsed i1n quasi- statronary
erivation of the propulsive force orn an oscillating arior.
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Frgure 6. — Varjiation with rediced 7reguency of stream
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